enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square-free integer - Wikipedia

    en.wikipedia.org/wiki/Square-free_integer

    The square-free part is 7, the square-free factor such that the quotient is a square is 3 ⋅ 7 = 21, and the largest square-free factor is 2 ⋅ 3 ⋅ 5 ⋅ 7 = 210. No algorithm is known for computing any of these square-free factors which is faster than computing the complete prime factorization.

  3. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    if the last digit of a number is 4 or 6, its square ends in an odd digit followed by a 6; and; if the last digit of a number is 5, its square ends in 25. In base 12, a square number can end only with square digits (like in base 12, a prime number can end only with prime digits or 1), that is, 0, 1, 4 or 9, as follows:

  4. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    The product of two variables ranging from 90-99 will result in a 4-digit number. The first step is to find the ones-digit and the tens digit. Subtract both variables from 100 which will result in 2 one-digit number. The product of the 2 one-digit numbers will be the last two digits of one's final product.

  5. Windows Calculator - Wikipedia

    en.wikipedia.org/wiki/Windows_Calculator

    A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.

  6. Legendre's three-square theorem - Wikipedia

    en.wikipedia.org/wiki/Legendre's_three-square...

    Pierre de Fermat gave a criterion for numbers of the form 8a + 1 and 8a + 3 to be sums of a square plus twice another square, but did not provide a proof. [1] N. Beguelin noticed in 1774 [2] that every positive integer which is neither of the form 8n + 7, nor of the form 4n, is the sum of three squares, but did not provide a satisfactory proof. [3]

  7. Middle-square method - Wikipedia

    en.wikipedia.org/wiki/Middle-square_method

    One iteration of the middle-square method, showing a 6-digit seed, which is then squared, and the resulting value has its middle 6 digits as the output value (and also as the next seed for the sequence). Directed graph of all 100 2-digit pseudorandom numbers obtained using the middle-square method with n = 2.

  8. Lattice multiplication - Wikipedia

    en.wikipedia.org/wiki/Lattice_multiplication

    In this case, the column digit is 5 and the row digit is 2. Write their product, 10, in the cell, with the digit 1 above the diagonal and the digit 0 below the diagonal (see picture for Step 1). If the simple product lacks a digit in the tens place, simply fill in the tens place with a 0. [2] Step 1

  9. Square triangular number - Wikipedia

    en.wikipedia.org/wiki/Square_triangular_number

    All square triangular numbers have the form , where is a convergent to the continued fraction expansion of , the square root of 2. [ 4 ] A. V. Sylwester gave a short proof that there are infinitely many square triangular numbers: If the n {\displaystyle n} th triangular number n ( n + 1 ) 2 {\displaystyle {\tfrac {n(n+1)}{2}}} is square, then ...