Search results
Results from the WOW.Com Content Network
The importance of Stokes' law is illustrated by the fact that it played a critical role in the research leading to at least three Nobel Prizes. [5] Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity. [5]
The Stokes number (Stk), named after George Gabriel Stokes, is a dimensionless number characterising the behavior of particles suspended in a fluid flow. The Stokes number is defined as the ratio of the characteristic time of a particle (or droplet) to a characteristic time of the flow or of an obstacle, or
In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.
In this notation, Stokes' theorem reads as = . In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments ...
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...
In computational fluid dynamics (CFD), the SIMPLE algorithm is a widely used numerical procedure to solve the Navier–Stokes equations. SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early ...
The small time behavior of the flow is then found through simplification of the incompressible Navier–Stokes equations using the initial flow to give a step-by-step solution as time progresses. An exact solution in two spatial dimensions is known, and is presented below. Animation of a Taylor-Green Vortex using colour coded Lagrangian tracers