enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    Moreover, complementary Python packages are available; SciPy is a library that adds more MATLAB-like functionality and Matplotlib is a plotting package that provides MATLAB-like plotting functionality. Although matlab can perform sparse matrix operations, numpy alone cannot perform such operations and requires the use of the scipy.sparse library.

  3. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication.It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices.

  4. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions. In R , function vec() of package 'ks' allows vectorization and function vech() implemented in both packages 'ks' and 'sn' allows half-vectorization.

  5. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  6. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently. [1] [2] [3] The basic idea is to perform a QR decomposition, writing the matrix as a product of an orthogonal matrix and an upper triangular matrix, multiply the factors in the reverse order, and iterate.

  7. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square ...

  8. Matrix completion - Wikipedia

    en.wikipedia.org/wiki/Matrix_completion

    The high rank matrix completion in general is NP-Hard. However, with certain assumptions, some incomplete high rank matrix or even full rank matrix can be completed. Eriksson, Balzano and Nowak [10] have considered the problem of completing a matrix with the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces.

  9. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...