Search results
Results from the WOW.Com Content Network
Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
For example, in the Carnot cycle, while the heat flow from a hot reservoir to a cold reservoir represents the increase in the entropy in a cold reservoir, the work output, if reversibly and perfectly stored, represents the decrease in the entropy which could be used to operate the heat engine in reverse, returning to the initial state; thus the ...
Mathematically, the absolute entropy of any system at zero temperature is the natural log of the number of ground states times the Boltzmann constant k B = 1.38 × 10 −23 J K −1. The entropy of a perfect crystal lattice as defined by Nernst's theorem is zero provided that its ground state is unique, because ln(1) = 0.
The T-V diagram of the rubber band experiment. The decrease in the temperature of the rubber band in a spontaneous process at ambient temperature can be explained using the Helmholtz free energy = where dF is the change in free energy, dL is the change in length, τ is the tension, dT is the change in temperature and S is the entropy.
[1] [2] A standard example of such a system is population inversion in laser physics. Thermodynamic systems with unbounded phase space cannot achieve negative temperatures: adding heat always increases their entropy. The possibility of a decrease in entropy as energy increases requires the system to "saturate" in entropy.
This law of entropy increase quantifies the reduction in the capacity of an isolated compound thermodynamic system to do thermodynamic work on its surroundings, or indicates whether a thermodynamic process may occur. For example, whenever there is a suitable pathway, heat spontaneously flows from a hotter body to a colder one.
The definition of entropy is central to the establishment of the second law of thermodynamics, which states that the entropy of isolated systems cannot decrease with time, as they always tend to arrive at a state of thermodynamic equilibrium, where the entropy is highest. Entropy is therefore also considered to be a measure of disorder in the ...