Search results
Results from the WOW.Com Content Network
The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [ 2 ] [ 3 ] It converts atmospheric nitrogen (N 2 ) to ammonia (NH 3 ) by a reaction with hydrogen (H 2 ) using finely divided iron metal as a catalyst:
The overall reaction for BNF is: N 2 + 16ATP + 16H 2 O + 8e − + 8H + → 2NH 3 +H 2 + 16ADP + 16P i. The process is coupled to the hydrolysis of 16 equivalents of ATP and is accompanied by the co-formation of one equivalent of H 2. [15] The conversion of N 2 into ammonia occurs at a metal cluster called FeMoco, an abbreviation for the iron ...
The Haber process, [5] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [6] [7] It converts atmospheric nitrogen (N 2) to ammonia (NH 3) by a reaction with hydrogen (H 2) using finely divided iron metal as a catalyst:
The dominant technology for abiological nitrogen fixation is the Haber process, which uses iron-based heterogeneous catalysts and H 2 to convert N 2 to NH 3. This article focuses on homogeneous (soluble) catalysts for the same or similar conversions.
As the reaction drives toward completion, nitrogen (N 2), and carbon dioxide (CO 2), in the case of urea use, are produced. Selective catalytic reduction of NO x using ammonia as the reducing agent was patented in the United States by the Engelhard Corporation in 1957. Development of SCR technology continued in Japan and the US in the early ...
Denitrification generally proceeds through some combination of the following half reactions, with the enzyme catalyzing the reaction in parentheses: NO 3 − + 2 H + + 2 e − → NO 2 − + H 2 O (Nitrate reductase) NO 2 − + 2 H + + e − → NO + H 2 O (Nitrite reductase) 2 NO + 2 H + + 2 e − → N 2 O + H 2 O (Nitric-oxide reductase) N 2 ...
In this biological process, which is a redox comproportionation reaction, nitrite and ammonium ions are converted directly into a diatomic molecule of nitrogen and water. [8] NH + 4 + NO − 2 → N 2 + 2 H 2 O (ΔG° = −357 kJ⋅mol −1). [9] Globally, this process may be responsible for 30–50% of the N 2 gas produced in the oceans. [10]
This process makes up a major proportion of nitrogen conversion in the oceans. The stoichiometrically balanced formula for the ANAMMOX chemical reaction can be written as following, where an ammonium ion includes the ammonia molecule, its conjugated base: NH + 4 + NO − 2 → N 2 + 2 H 2 O (ΔG° = −357 kJ⋅mol −1). [34]