enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .

  3. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate the Markov property. For example, imagine a large number n of molecules in solution in state A, each of which can undergo a chemical reaction to state B with a certain average rate.

  4. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    The simplest Markov model is the Markov chain.It models the state of a system with a random variable that changes through time. In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state.

  5. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values.

  6. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    The renewal process is a generalization of the Poisson process.In essence, the Poisson process is a continuous-time Markov process on the positive integers (usually starting at zero) which has independent exponentially distributed holding times at each integer before advancing to the next integer, +.

  7. Stochastic process - Wikipedia

    en.wikipedia.org/wiki/Stochastic_process

    Markov processes are stochastic processes, traditionally in discrete or continuous time, that have the Markov property, which means the next value of the Markov process depends on the current value, but it is conditionally independent of the previous values of the stochastic process. In other words, the behavior of the process in the future is ...

  8. Gibbs measure - Wikipedia

    en.wikipedia.org/wiki/Gibbs_measure

    The Hammersley–Clifford theorem implies that any probability measure that satisfies a Markov property is a Gibbs measure for an appropriate choice of (locally defined) energy function. Therefore, the Gibbs measure applies to widespread problems outside of physics , such as Hopfield networks , Markov networks , Markov logic networks , and ...

  9. Itô diffusion - Wikipedia

    en.wikipedia.org/wiki/Itô_diffusion

    The strong Markov property is a generalization of the Markov property above in which t is replaced by a suitable random time τ : Ω → [0, +∞] known as a stopping time. So, for example, rather than "restarting" the process X at time t = 1, one could "restart" whenever X first reaches some specified point p of R n.