enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Thus only 23 fraction bits of the significand appear in the memory format, but the total precision is 24 bits (equivalent to log 10 (2 24) ≈ 7.225 decimal digits) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value. The bits are laid out as follows:

  3. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    The significand [1] (also coefficient, [1] sometimes argument, [2] or more ambiguously mantissa, [3] fraction, [4] [5] [nb 1] or characteristic [6] [3]) is the first (left) part of a number in scientific notation or related concepts in floating-point representation, consisting of its significant digits. For negative numbers, it does not include ...

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 223 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.

  5. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    For example, a significand of 8 000 000 is encoded as binary 0111 1010000100 1000000000, with the leading 4 bits encoding 7; the first significand which requires a 24th bit (and thus the second encoding form) is 2 23 = 8 388 608. In the above cases, the value represented is: (−1) sign × 10 exponent−101 × significand

  6. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    With the 52 bits of the fraction (F) significand appearing in the ... 2 ≙ 4037 0000 0000 0000 16 ≙ +2 4 × 1.0111 2 = 10111 2 = 23

  7. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base .) Analogous to scientific notation , where numbers are written to have a single non-zero digit to the left of the decimal point, we rewrite this number so it has a single 1 bit to the left of the "binary point".

  8. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    In IEEE 754 parlance, there are 10 bits of significand, but there are 11 bits of significand precision (log 10 (2 11) ≈ 3.311 decimal digits, or 4 digits ± slightly less than 5 units in the last place).

  9. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A minifloat in 1 byte (8 bit) with 1 sign bit, 4 exponent bits and 3 significand bits (in short, a 1.4.3 minifloat) is demonstrated here. The exponent bias is defined as 7 to center the values around 1 to match other IEEE 754 floats [3] [4] so (for most values) the actual multiplier for exponent x is 2 x−7. All IEEE 754 principles should be ...