Search results
Results from the WOW.Com Content Network
In computer architecture, cycles per instruction (aka clock cycles per instruction, clocks per instruction, or CPI) is one aspect of a processor's performance: the average number of clock cycles per instruction for a program or program fragment. [1] It is the multiplicative inverse of instructions per cycle.
In computer architecture, instructions per cycle (IPC), commonly called instructions per clock, is one aspect of a processor's performance: the average number of instructions executed for each clock cycle. It is the multiplicative inverse of cycles per instruction. [1] [2] [3]
In 2002, an Intel Pentium 4 model was introduced as the first CPU with a clock rate of 3 GHz (three billion cycles per second corresponding to ~ 0.33 nanoseconds per cycle). Since then, the clock rate of production processors has increased more slowly, with performance improvements coming from other design changes. Set in 2011, the Guinness ...
Classic Complex Instruction Set Computer (CISC) ISAs optimized by providing a larger set of more complex CPU instructions. Generally speaking, however, complex instructions inflate the number of clock cycles per instruction C l o c k C y c l e s I n s t r u c t i o n {\displaystyle \mathrm {\tfrac {ClockCycles}{Instruction}} } because they must ...
Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic.
CPU time (or process time) is the amount of time that a central processing unit (CPU) was used for processing instructions of a computer program or operating system. CPU time is measured in clock ticks or seconds. Sometimes it is useful to convert CPU time into a percentage of the CPU capacity, giving the CPU usage.
In computer engineering, instruction pipelining is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps (the eponymous "pipeline") performed by different processor units with different parts of instructions ...
In early processors, the TSC was a cycle counter, incrementing by 1 for each clock cycle (which could cause its rate to vary on processors that could change clock speed at runtime) – in later processors, it increments at a fixed rate that doesn't necessarily match the CPU clock speed. [n] Usually 3 [o] Intel Pentium, AMD K5, Cyrix 6x86MX ...