Search results
Results from the WOW.Com Content Network
Chlorine and oxygen can bond in a number of ways: chlorine monoxide radical, ClO•, chlorine (II) oxide radical; chloroperoxyl radical, ClOO•, chlorine (II) peroxide radical; chlorine dioxide, ClO 2, chlorine (IV) oxide; chlorine trioxide radical, ClO 3 •, chlorine (VI) oxide radical; chlorine tetroxide radical, ClO 4 •, chlorine (VII ...
Chlorine dioxide is approximately 10 times more soluble in water than elemental chlorine [1] but its solubility is very temperature-dependent. At partial pressures above 10 kPa (1.5 psi) [1] (or gas-phase concentrations greater than 10% volume in air at STP) of ClO 2 may explosively decompose into chlorine and oxygen. The decomposition can be ...
Evaporation under reduced pressure allows it to be concentrated further to about 40%, but then it decomposes to perchloric acid, chlorine, oxygen, water, and chlorine dioxide. Its most important salt is sodium chlorate, mostly used to make chlorine dioxide to bleach paper pulp. The decomposition of chlorate to chloride and oxygen is a common ...
The structure of dichlorine monoxide is similar to that of water and hypochlorous acid, with the molecule adopting a bent molecular geometry (due to the lone pairs on the oxygen atom) and resulting in C 2V molecular symmetry. The bond angle is slightly larger than normal, likely due to steric repulsion between the bulky chlorine atoms.
Chlorine monoxide is a chemical radical with the chemical formula ClO •. It plays an important role in the process of ozone depletion. In the stratosphere, chlorine atoms react with ozone molecules to form chlorine monoxide and oxygen. Cl • + O 3 → ClO • + O 2. This reaction causes the depletion of the ozone layer. [1]
A chemical reaction is a process that leads to the chemical transformation of one set of chemical substances to another. [1] When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an energy change as new products are generated.
3 anion, whose chlorine atom is in the +5 oxidation state. The term can also refer to chemical compounds containing this anion, with chlorates being the salts of chloric acid. Other oxyanions of chlorine can be named "chlorate" followed by a Roman numeral in parentheses denoting the oxidation state of chlorine: e.g., the ClO −
Dichlorine heptoxide is a covalent compound consisting of two ClO 3 portions linked by an oxygen atom. It has an overall bent molecular geometry (C 2 symmetry), with a Cl−O−Cl angle of 118.6°. The chlorine–oxygen bond lengths are 1.709 Å in the central region and 1.405 Å within each ClO 3 cluster. [1]