enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tautochrone curve - Wikipedia

    en.wikipedia.org/wiki/Tautochrone_curve

    Four balls slide down a cycloid curve from different positions, but they arrive at the bottom at the same time. The blue arrows show the points' acceleration along the curve. On the top is the time-position diagram. Objects representing tautochrone curve

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  6. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Discontinuities in acceleration do not occur in real-world environments because of deformation, quantum mechanics effects, and other causes. However, a jump-discontinuity in acceleration and, accordingly, unbounded jerk are feasible in an idealized setting, such as an idealized point mass moving along a piecewise smooth, whole continuous path ...

  7. Orders of magnitude (acceleration) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Acceleration of Earth toward the sun due to sun's gravitational attraction 10 −1: 1 dm/s 2: lab 0.25 m/s 2: 0.026 g: Train acceleration for SJ X2 [citation needed] 10 0: 1 m/s 2: inertial 1.62 m/s 2: 0.1654 g: Standing on the Moon at its equator [citation needed] lab 4.3 m/s 2: 0.44 g: Car acceleration 0–100 km/h in 6.4 s with a Saab 9-5 ...

  8. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17530°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60639° and the crank-rod angle is 88.21832°. Clearly, in ...

  9. Galileo's Leaning Tower of Pisa experiment - Wikipedia

    en.wikipedia.org/wiki/Galileo's_Leaning_Tower_of...

    Comparison of the antiquated view and the outcome of the experiment (size of the spheres represent their masses, not their volumes) Between 1589 and 1592, [1] the Italian scientist Galileo Galilei (then professor of mathematics at the University of Pisa) is said to have dropped "unequal weights of the same material" from the Leaning Tower of Pisa to demonstrate that their time of descent was ...