enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Envelope (waves) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(waves)

    The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable. Envelope for a modulated sine wave.

  3. Wave packet - Wikipedia

    en.wikipedia.org/wiki/Wave_packet

    Since the integral of ρ t is constant while the width is becoming narrow at small times, this function approaches a delta function at t=0, = again only in the sense of distributions, so that () = for any test function f. The time-varying Gaussian is the propagation kernel for the diffusion equation and it obeys the convolution identity ...

  4. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Mathematically, the derivatives of the Gaussian function can be represented using Hermite functions. For unit variance, the n-th derivative of the Gaussian is the Gaussian function itself multiplied by the n-th Hermite polynomial, up to scale. Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory.

  5. Morlet wavelet - Wikipedia

    en.wikipedia.org/wiki/Morlet_wavelet

    The Morlet wavelet filtering process involves transforming the sensor's output signal into the frequency domain. By convolving the signal with the Morlet wavelet, which is a complex sinusoidal wave with a Gaussian envelope, the technique allows for the extraction of relevant frequency components from the signal.

  6. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    In other words, where f is a (normalized) Gaussian function with variance σ 2 /2 π, centered at zero, and its Fourier transform is a Gaussian function with variance σ −2 /2 π. Gaussian functions are examples of Schwartz functions (see the discussion on tempered distributions below).

  7. Slowly varying envelope approximation - Wikipedia

    en.wikipedia.org/wiki/Slowly_varying_envelope...

    The slowly varying envelope approximation is often used because the resulting equations are in many cases easier to solve than the original equations, reducing the order of—all or some of—the highest-order partial derivatives. But the validity of the assumptions which are made need to be justified.

  8. Gabor transform - Wikipedia

    en.wikipedia.org/wiki/Gabor_transform

    The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. [1] The window function means that the signal near the time being analyzed will have higher weight.

  9. Hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_function

    Plot of the hypergeometric function 2F1(a,b; c; z) with a=2 and b=3 and c=4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics , the Gaussian or ordinary hypergeometric function 2 F 1 ( a , b ; c ; z ) is a special function represented by the hypergeometric series , that ...