Search results
Results from the WOW.Com Content Network
Energy is a scalar quantity, and the mechanical energy of a system is the sum of the potential energy (which is measured by the position of the parts of the system) and the kinetic energy (which is also called the energy of motion): [1] [2]
The Helmholtz free energy is defined as [3], where . F is the Helmholtz free energy (sometimes also called A, particularly in the field of chemistry) (SI: joules, CGS: ergs),; U is the internal energy of the system (SI: joules, CGS: ergs),
where: = (), = = (), is the modified Reynolds number, is the packed bed friction factor,; is the pressure drop across the bed,; is the length of the bed (not the column), is the equivalent spherical diameter of the packing,
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
The total energy of the system is (,,, …) where S is entropy, and the are the other extensive parameters of the system (e.g. volume, particle number, etc.).The entropy of the system may likewise be written as a function of the other extensive parameters as (,,, …
The Fermi energy is a concept in quantum mechanics usually referring to the energy difference between the highest and lowest occupied single-particle states in a quantum system of non-interacting fermions at absolute zero temperature.
The mechanical work required for or applied during rotation is the torque times the rotation angle. The instantaneous power of an angularly accelerating body is the torque times the angular velocity.