Search results
Results from the WOW.Com Content Network
Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.
Functions differing by only a constant have the same derivative, and it can be shown that the antiderivative of a given function is a family of functions differing only by a constant. [50]: 326 Since the derivative of the function y = x 2 + C, where C is any constant, is y′ = 2x, the antiderivative of the latter is given by:
A related goal is to find a relation between the magnitude and phase of a complex response function. In general, unfortunately, the phase cannot be uniquely predicted from the magnitude. [ 9 ] A simple example of this is a pure time delay of time T , which has amplitude 1 at any frequency regardless of T , but has a phase dependent on T ...
The equivalence relations on any set X, when ordered by set inclusion, form a complete lattice, called Con X by convention. The canonical map ker : X^X → Con X, relates the monoid X^X of all functions on X and Con X. ker is surjective but not injective. Less formally, the equivalence relation ker on X, takes each function f : X → X to its ...
A corresponding relation holds for the rising factorial and the backward difference operator. The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences ...
A few functions were common historically, but are now seldom used, such as the chord, versine (which appeared in the earliest tables [30]), haversine, coversine, [39] half-tangent (tangent of half an angle), and exsecant. List of trigonometric identities shows more relations between these functions.
The converse of this implication leads to functions that are order-reflecting, i.e. functions f as above for which f(a) ≤ f(b) implies a ≤ b. On the other hand, a function may also be order-reversing or antitone, if a ≤ b implies f(a) ≥ f(b). An order-embedding is a function f between orders that is both order-preserving and order ...
A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the function. The image of a function, sometimes called its range, is the set of the images of all elements in the domain. [6] [7] [8] [9]