enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  3. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]

  4. Conjugate (square roots) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_(square_roots)

    As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator , by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation ).

  5. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    3.4 Continued fraction and square root. ... the simplest form of a continued fraction, ... is marked out by the intervals 34, 21, 13 and 8, and the main climax ...

  6. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    Likewise, tan ⁠ 3 π / 16 ⁠, tan ⁠ 7 π / 16 ⁠, tan ⁠ 11 π / 16 ⁠, and tan ⁠ 15 π / 16 ⁠ satisfy the irreducible polynomial x 4 − 4x 3 − 6x 2 + 4x + 1 = 0, and so are conjugate algebraic integers. This is the equivalent of angles which, when measured in degrees, have rational numbers.

  7. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − x − 1 = 0.

  8. Pell's equation - Wikipedia

    en.wikipedia.org/wiki/Pell's_equation

    The continued fraction of has the form [; ,,, ¯]. Since the period has length 4 {\displaystyle 4} , which is an even number, the convergent producing the fundamental solution is obtained by truncating the continued fraction right before the end of the first occurrence of the period: [ 2 ; 1 , 1 , 1 ] = 8 3 {\displaystyle [2;\ 1,1,1]={\frac {8 ...

  9. Quadratic integer - Wikipedia

    en.wikipedia.org/wiki/Quadratic_integer

    In particular √ D belongs to [], being a root of the equation x 2 − D = 0, which has 4D as its discriminant. The square root of any integer is a quadratic integer, as every integer can be written n = m 2 D, where D is a square-free integer, and its square root is a root of x 2 − m 2 D = 0.