enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    In statistics, linear regression is a model that estimates the linear relationship between a scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple ...

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Regression models predict a value of the Y variable given known values of the X variables. Prediction within the range of values in the dataset used for model-fitting is known informally as interpolation. Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions.

  4. Linear classifier - Wikipedia

    en.wikipedia.org/wiki/Linear_classifier

    Linear classifier. In machine learning, a linear classifier makes a classification decision for each object based on a linear combination of its features. Such classifiers work well for practical problems such as document classification, and more generally for problems with many variables (features), reaching accuracy levels comparable to non ...

  5. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable. [1][2][3][4][5] That is, it concerns two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non ...

  6. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In regression analysis, logistic regression[1] (or logit regression) estimates the parameters of a logistic model (the coefficients in the linear or non linear combinations). In binary logistic regression there is a single binary dependent variable, coded by an indicator variable, where the two values are labeled "0" and "1", while the ...

  7. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    Mathematical model used for classification or regression. Discriminative models, also referred to as conditional models, are a class of models frequently used for classification. They are typically used to solve binary classification problems, i.e. assign labels, such as pass/fail, win/lose, alive/dead or healthy/sick, to existing datapoints.

  8. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an n th degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E (y | x).

  9. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of the experiment in question. [a] In this sense, some common independent ...