Search results
Results from the WOW.Com Content Network
A detector is used to convert X-ray energy into voltage signals; this information is sent to a pulse processor, which measures the signals and passes them onto an analyzer for data display and analysis. [citation needed] The most common detector used to be a Si(Li) detector cooled to cryogenic temperatures with liquid nitrogen.
Image of a Kratos Axis-165 system equipped with XPS, ISS, and AES, from Alberta Centre for Surface Engineering and Science (ACSES). Low-energy ion scattering spectroscopy (LEIS), sometimes referred to simply as ion scattering spectroscopy (ISS), is a surface-sensitive analytical technique used to characterize the chemical and structural makeup of materials.
The main components of an XPS system are the source of X-rays, an ultra-high vacuum (UHV) chamber with mu-metal magnetic shielding, an electron collection lens, an electron energy analyzer, an electron detector system, a sample introduction chamber, sample mounts, a sample stage with the ability to heat or cool the sample, and a set of stage ...
The electron microprobe (electron probe microanalyzer) developed from two technologies: electron microscopy — using a focused high energy electron beam to impact a target material, and X-ray spectroscopy — identification of the photons scattered from the electron beam impact, with the energy/wavelength of the photons characteristic of the atoms excited by the incident electrons.
In recent years, industrial and biological monitoring has presented another major need for metal analysis via ICP-MS. Individuals working in factories where exposure to metals is likely and unavoidable, such as a battery factory, are required by their employer to have their blood or urine analyzed for metal toxicity on a regular basis.
Chemical metallurgy is the science of obtaining metals from their concentrates, semi products, recycled bodies and solutions, and of considering reactions of metals with an approach of disciplines belonging to chemistry.
Dynamic secondary ion mass spectrometry (DSIMS) is a powerful tool for characterizing surfaces, including the elemental, molecular, and isotopic composition and can be used to study the structure of thin films, the composition of polymers, and the surface chemistry of catalysts.
The distance between two bonded atoms is a sensitive measure of the bond strength and its bond order; thus, X-ray crystallographic studies have led to the discovery of even more exotic types of bonding in inorganic chemistry, such as metal-metal double bonds, [63] [64] [65] metal-metal quadruple bonds, [66] [67] [68] and three-center, two ...