enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  3. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  4. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    The previous figure is a graphical representation of kernel density estimate, which we now define in an exact manner. Let x 1, x 2, ..., x n be a sample of d-variate random vectors drawn from a common distribution described by the density function ƒ.

  5. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Input points before kernel PCA. Consider three concentric clouds of points (shown); we wish to use kernel PCA to identify these groups. The color of the points does not represent information involved in the algorithm, but only shows how the transformation relocates the data points.

  6. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    According to David Salsburg, the algorithms used in kernel regression were independently developed and used in fuzzy systems: "Coming up with almost exactly the same computer algorithm, fuzzy systems and kernel density-based regressions appear to have been developed completely independently of one another."

  7. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    The machine learning task for knowledge graph embedding that is more often used to evaluate the embedding accuracy of the models is the link prediction. [ 1 ] [ 3 ] [ 5 ] [ 6 ] [ 7 ] [ 18 ] Rossi et al. [ 5 ] produced an extensive benchmark of the models, but also other surveys produces similar results.

  8. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification. [1]

  9. Knowledge distillation - Wikipedia

    en.wikipedia.org/wiki/Knowledge_distillation

    In machine learning, knowledge distillation or model distillation is the process of transferring knowledge from a large model to a smaller one. While large models (such as very deep neural networks or ensembles of many models) have more knowledge capacity than small models, this capacity might not be fully utilized.