Search results
Results from the WOW.Com Content Network
Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.
The previous figure is a graphical representation of kernel density estimate, which we now define in an exact manner. Let x 1, x 2, ..., x n be a sample of d-variate random vectors drawn from a common distribution described by the density function ƒ.
Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]
Kig comes up with a little program (written in Python) called pykig.py which can load a Python script, e.g. MyScript.py; build a Kig figure, described by this script; open Kig and display the figure. For example, here is how a Sierpinski triangle can be made (as an IFS) with pykig:
LabPlot is a free and open-source, cross-platform computer program for interactive scientific plotting, curve fitting, nonlinear regression, data processing and data analysis. LabPlot is available, under the GPL-2.0-or-later license, for Windows, macOS, Linux, FreeBSD and Haiku operating systems.
LabPlot is a data analysis and visualization application built on the KDE Platform. MFEM is a free, lightweight, scalable C++ library for finite element methods. Origin, a software package that is widely used for making scientific graphs. It comes with its own C/C++ compiler that conforms quite closely to ANSI standard.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
The generalized additive model for location, scale and shape (GAMLSS) is a semiparametric regression model in which a parametric statistical distribution is assumed for the response (target) variable but the parameters of this distribution can vary according to explanatory variables.