Search results
Results from the WOW.Com Content Network
This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors. What results is a deep relationship between the diagonalizability of an operator and how it acts on the orthonormal basis vectors.
[1] [2] [3] For example, the standard basis for a Euclidean space is an orthonormal basis, where the relevant inner product is the dot product of vectors. The image of the standard basis under a rotation or reflection (or any orthogonal transformation ) is also orthonormal, and every orthonormal basis for R n {\displaystyle \mathbb {R} ^{n ...
With real nature, we can receive answers that render the most alien-looking and silent beings understandable, from plants to sea urchins and sponges—much like they did for Aristotle, who was ...
Let stand for ,, or . The Stiefel manifold () can be thought of as a set of n × k matrices by writing a k-frame as a matrix of k column vectors in . The orthonormality condition is expressed by A*A = where A* denotes the conjugate transpose of A and denotes the k × k identity matrix.
For example, the y-axis is normal to the curve = at the origin. However, normal may also refer to the magnitude of a vector. In particular, a set is called orthonormal (orthogonal plus normal) if it is an orthogonal set of unit vectors. As a result, use of the term normal to mean "orthogonal" is often avoided.
Homochirality is an obvious characteristic of life on Earth, yet extraterrestrial samples contain largely racemic compounds. [7] It is not known whether homochirality existed before life, whether the building blocks of life must have this particular chirality, or whether life must be homochiral at all.
In mathematics, orthogonal functions belong to a function space that is a vector space equipped with a bilinear form.When the function space has an interval as the domain, the bilinear form may be the integral of the product of functions over the interval:
Peloria or a peloric flower is the aberration in which a plant that normally produces zygomorphic flowers produces actinomorphic flowers instead. This aberration can be developmental, or it can have a genetic basis: the CYCLOIDEA gene controls floral symmetry. Peloric Antirrhinum plants have been produced by knocking out this gene. [5]