Search results
Results from the WOW.Com Content Network
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must be continuous at every point in its domain. The converse does not hold: a continuous function need not be differentiable.
A bump function is a smooth function with compact support.. In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain.
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
When I is a closed interval [a,b], γ(a) is called the starting point and γ(b) is the endpoint of γ. If the starting and the end points coincide (that is, γ(a) = γ(b)), then γ is a closed curve or a loop. To be a C r-loop, the function γ must be r-times continuously differentiable and satisfy γ (k) (a) = γ (k) (b) for 0 ≤ k ≤ r.
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
A function is (totally) differentiable if its total derivative exists at every point in its domain. Conceptually, the definition of the total derivative expresses the idea that d f a {\displaystyle df_{a}} is the best linear approximation to f {\displaystyle f} at the point a {\displaystyle a} .
This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated ...