enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    It might be expected that a continuous function must have a derivative, or that the set of points where it is not differentiable should be countably infinite or finite. According to Weierstrass in his paper, earlier mathematicians including Gauss had often assumed that this was true. This might be because it is difficult to draw or visualise a ...

  3. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    As for Q(g(x)), notice that Q is defined wherever f is. Furthermore, f is differentiable at g(a) by assumption, so Q is continuous at g(a), by definition of the derivative. The function g is continuous at a because it is differentiable at a, and therefore Q ∘ g is continuous at a. So its limit as x goes to a exists and equals Q(g(a)), which ...

  4. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  5. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    More precisely, if all the partial derivatives of at exist and are continuous in a neighborhood of , then is differentiable at . When this happens, then in addition, the total derivative of f {\displaystyle f} is the linear transformation corresponding to the Jacobian matrix of partial derivatives at that point.

  6. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    is everywhere continuous. However, it is not differentiable at = (but is so everywhere else). Weierstrass's function is also everywhere continuous but nowhere differentiable. The derivative f′(x) of a differentiable function f(x) need not be continuous. If f′(x) is continuous, f(x) is said to be continuously differentiable.

  7. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...

  8. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated ...

  9. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    A bump function is a smooth function with compact support.. In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain.