enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    A comparison between the L1 ball and the L2 ball in two dimensions gives an intuition on how L1 regularization achieves sparsity. Enforcing a sparsity constraint on can lead to simpler and more interpretable models. This is useful in many real-life applications such as computational biology. An example is developing a simple predictive test for ...

  3. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.

  4. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    This regularization function, while attractive for the sparsity that it guarantees, is very difficult to solve because doing so requires optimization of a function that is not even weakly convex. Lasso regression is the minimal possible relaxation of ℓ 0 {\displaystyle \ell _{0}} penalization that yields a weakly convex optimization problem.

  5. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    It was proven in 2014 that the elastic net can be reduced to the linear support vector machine. [7] A similar reduction was previously proven for the LASSO in 2014. [8] The authors showed that for every instance of the elastic net, an artificial binary classification problem can be constructed such that the hyper-plane solution of a linear support vector machine (SVM) is identical to the ...

  6. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    Techniques which use an L1 penalty, like LASSO, encourage sparse solutions (where the many parameters are zero). [14] Elastic net regularization uses a penalty term that is a combination of the norm and the squared norm of the parameter vector.

  7. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    In many cases, this matrix is chosen as a scalar multiple of the identity matrix (=), giving preference to solutions with smaller norms; this is known as L 2 regularization. [20] In other cases, high-pass operators (e.g., a difference operator or a weighted Fourier operator ) may be used to enforce smoothness if the underlying vector is ...

  8. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    In ()-(), L1-norm ‖ ‖ returns the sum of the absolute entries of its argument and L2-norm ‖ ‖ returns the sum of the squared entries of its argument.If one substitutes ‖ ‖ in by the Frobenius/L2-norm ‖ ‖, then the problem becomes standard PCA and it is solved by the matrix that contains the dominant singular vectors of (i.e., the singular vectors that correspond to the highest ...

  9. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.