Search results
Results from the WOW.Com Content Network
The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.
A Riemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest.
One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind. With this remark the theorem takes the stronger form: Let be a monotone function defined on an interval .
The discontinuity in the tangential velocity means the flow has infinite vorticity on a vortex sheet. At high Reynolds numbers, vortex sheets tend to be unstable. In particular, they may exhibit Kelvin–Helmholtz instability. The formulation of the vortex sheet equation of motion is given in terms of a complex coordinate = +.
For example, in the classification of discontinuities: in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides);
A graph of a parabola with a removable singularity at x = 2. In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.
In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.
In numerical analysis and computational fluid dynamics, Godunov's scheme is a conservative numerical scheme, suggested by Sergei Godunov in 1959, [1] for solving partial differential equations. One can think of this method as a conservative finite volume method which solves exact, or approximate Riemann problems at each inter-cell boundary.