enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The log-likelihood function being plotted is used in the computation of the score (the gradient of the log-likelihood) and Fisher information (the curvature of the log-likelihood). Thus, the graph has a direct interpretation in the context of maximum likelihood estimation and likelihood-ratio tests.

  3. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    The use of log probabilities improves numerical stability, when the probabilities are very small, because of the way in which computers approximate real numbers. [1] Simplicity. Many probability distributions have an exponential form. Taking the log of these distributions eliminates the exponential function, unwrapping the exponent.

  4. Kelly criterion - Wikipedia

    en.wikipedia.org/wiki/Kelly_criterion

    Example of the optimal Kelly betting fraction, versus expected return of other fractional bets. In probability theory, the Kelly criterion (or Kelly strategy or Kelly bet) is a formula for sizing a sequence of bets by maximizing the long-term expected value of the logarithm of wealth, which is equivalent to maximizing the long-term expected geometric growth rate.

  5. Log-likelihood function - Wikipedia

    en.wikipedia.org/?title=Log-likelihood_function&...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Log-likelihood_function&oldid=901713880"

  6. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    For logistic regression, the measure of goodness-of-fit is the likelihood function L, or its logarithm, the log-likelihood ℓ. The likelihood function L is analogous to the ε 2 {\displaystyle \varepsilon ^{2}} in the linear regression case, except that the likelihood is maximized rather than minimized.

  7. Informant (statistics) - Wikipedia

    en.wikipedia.org/wiki/Informant_(statistics)

    In statistics, the score (or informant [1]) is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular value of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter

  8. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Maximum likelihood estimation is a generic technique for estimating the unknown parameters in a statistical model by constructing a log-likelihood function corresponding to the joint distribution of the data, then maximizing this function over all possible parameter values. In order to apply this method, we have to make an assumption about the ...

  9. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    Each of the two competing models, the null model and the alternative model, is separately fitted to the data and the log-likelihood recorded. The test statistic (often denoted by D) is twice the log of the likelihoods ratio, i.e., it is twice the difference in the log-likelihoods: