Search results
Results from the WOW.Com Content Network
The power rule for integrals was first demonstrated in a geometric form by Italian mathematician Bonaventura Cavalieri in the early 17th century for all positive integer values of , and during the mid 17th century for all rational powers by the mathematicians Pierre de Fermat, Evangelista Torricelli, Gilles de Roberval, John Wallis, and Blaise ...
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
Nonelementary antiderivatives can often be evaluated using Taylor series. Even if a function has no elementary antiderivative, its Taylor series can always be integrated term-by-term like a polynomial, giving the antiderivative function as a Taylor series with the same radius of convergence. However, even if the integrand has a convergent ...
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
The antiderivative of − 1 / x 2 can be found with the power rule and is 1 / x . Alternatively, one may choose u and v such that the product u′ (∫v dx) simplifies due to cancellation. For example, suppose one wishes to integrate:
This is known as the power rule. For example, d d x ( 5 x 4 ) = 5 ( 4 ) x 3 = 20 x 3 {\displaystyle {\frac {d}{dx}}(5x^{4})=5(4)x^{3}=20x^{3}} . However, many other functions cannot be differentiated as easily as polynomial functions , meaning that sometimes further techniques are needed to find the derivative of a function.
Simplest rules Derivative of a constant; Sum rule in differentiation; Constant factor rule in differentiation; Linearity of differentiation; Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit differentiation; Stationary point. Maxima and minima; First derivative test; Second ...
The chain rule is a formula for computing the derivative of the composition of two or more functions. That is, if f and g are functions, then the chain rule expresses the derivative of their composition f ∘ g (the function which maps x to f(g(x)) ) in terms of the derivatives of f and g and the product of functions as follows: