Search results
Results from the WOW.Com Content Network
The conversion of ethanol to ethylene is a fundamental example: [3] [4] CH 3 CH 2 OH → H 2 C=CH 2 + H 2 O. The reaction is accelerated by acid catalysts such as sulfuric acid and certain zeolites. These reactions often proceed via carbocation intermediates as shown for the dehydration of cyclohexanol. [5] Some alcohols are prone to dehydration.
In chemistry, a reagent (/ r i ˈ eɪ dʒ ən t / ree-AY-jənt) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. [1] The terms reactant and reagent are often used interchangeably, but reactant specifies a substance consumed in the course of a chemical reaction. [ 1 ]
An example of a simple chain reaction is the thermal decomposition of acetaldehyde (CH 3 CHO) to methane (CH 4) and carbon monoxide (CO). The experimental reaction order is 3/2, [4] which can be explained by a Rice-Herzfeld mechanism. [5] This reaction mechanism for acetaldehyde has 4 steps with rate equations for each step :
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
the central organic synthesis reagent for hydroboration Dicyclohexylcarbodiimide: an organic compound; primary use is to couple amino acids during artificial peptide synthesis Diethyl azodicarboxylate: a valuable reagent but also quite dangerous and explodes upon heating Diethyl ether: organic compound; a common laboratory solvent Dihydropyran
An example of organic reaction: oxidation of ketones to esters with a peroxycarboxylic acid Retrosynthetic analysis can be applied to design a complex synthesis reaction. Here the analysis starts from the products, for example by splitting selected chemical bonds, to arrive at plausible initial reagents.
The Robinson–Gabriel synthesis is an organic reaction in which a 2-acylamino-ketone reacts intramolecularly followed by a dehydration to give an oxazole.A cyclodehydrating agent is needed to catalyze the reaction [1] [2] [3] It is named after Sir Robert Robinson and Siegmund Gabriel who described the reaction in 1909 and 1910, respectively.
In organic chemistry, syn-and anti-addition are different ways in which substituent molecules can be added to an alkene (R 2 C=CR 2) or alkyne (RC≡CR).The concepts of syn and anti addition are used to characterize the different reactions of organic chemistry by reflecting the stereochemistry of the products in a reaction.