Search results
Results from the WOW.Com Content Network
Poloidal direction (red arrow) and toroidal direction (blue arrow) A torus of revolution in 3-space can be parametrized as: [2] (,) = (+ ) (,) = (+ ) (,) = using angular coordinates θ, φ ∈ [0, 2π), representing rotation around the tube and rotation around the torus's axis of revolution, respectively, where the major radius R is the distance from the center of the tube to ...
For a fully filled duct or pipe whose cross-section is a convex regular polygon, the hydraulic diameter is equivalent to the diameter of a circle inscribed within the wetted perimeter. This can be seen as follows: The N {\displaystyle N} -sided regular polygon is a union of N {\displaystyle N} triangles, each of height D / 2 {\displaystyle D/2 ...
The equivalent spherical diameter of an irregularly shaped object is the diameter of a sphere of equivalent geometric, optical, electrical, aerodynamic or hydrodynamic behavior to that of the particle under investigation. [1] [2] [3]
This page was last edited on 17 January 2025, at 00:34 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The dimensionless added mass coefficient is the added mass divided by the displaced fluid mass – i.e. divided by the fluid density times the volume of the body. In general, the added mass is a second-order tensor , relating the fluid acceleration vector to the resulting force vector on the body.
In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.