Search results
Results from the WOW.Com Content Network
The inverse of an upper triangular matrix, if it exists, is upper triangular. The product of an upper triangular matrix and a scalar is upper triangular. Together these facts mean that the upper triangular matrices form a subalgebra of the associative algebra of square matrices for a given size.
A Riordan array is an infinite lower triangular matrix, , constructed from two formal power series, () of order 0 and () of order 1, such that , = [] ().. A Riordan array is an element of the Riordan group. [1]
RStudio IDE (or RStudio) is an integrated development environment for R, a programming language for statistical computing and graphics. It is available in two formats: RStudio Desktop is a regular desktop application while RStudio Server runs on a remote server and allows accessing RStudio using a web browser .
The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices. QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
Decomposition: = where C is an m-by-r full column rank matrix and F is an r-by-n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } .
At the k-th step (starting with k = 0), we compute the QR decomposition A k = Q k R k where Q k is an orthogonal matrix (i.e., Q T = Q −1) and R k is an upper triangular matrix. We then form A k+1 = R k Q k.
In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.