Search results
Results from the WOW.Com Content Network
The Universal Soil Loss Equation (USLE) is a widely used mathematical model that describes soil erosion processes. [1]Erosion models play critical roles in soil and water resource conservation and nonpoint source pollution assessments, including: sediment load assessment and inventory, conservation planning and design for sediment control, and for the advancement of scientific understanding.
Specifically, a straight line on a log–log plot containing points (x 0, F 0) and (x 1, F 1) will have the function: = (/) (/), Of course, the inverse is true too: any function of the form = will have a straight line as its log–log graph representation, where the slope of the line is m.
Sample 2: 10%: 60%: 30%: The proportion of sand is 30% as in Sample 1, but as the proportion of silt rises by 40%, the proportion of clay decreases correspondingly. Sample 3: 10%: 30%: 60%: This sample has the same proportion of clay as Sample 2, but the proportions of silt and sand are swapped; the plot is reflected about its vertical axis.
Successful design of the slope requires geological information and site characteristics, e.g. properties of soil/rock mass, slope geometry, groundwater conditions, alternation of materials by faulting, joint or discontinuity systems, movements and tension in joints, earthquake activity etc. [4] [5] The presence of water has a detrimental effect ...
To find either of the single derivatives, or , using that method, find the slope between the two surrounding points in the appropriate axis. For example, to calculate f x {\displaystyle f_{x}} for one of the points, find f ( x , y ) {\displaystyle f(x,y)} for the points to the left and right of the target point and calculate their slope, and ...
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.
The behavior of the logistic map is shown in Cobweb plot form. The animation shows the change in behavior as the parameter (r in the figure) is increased from 1 to 4, starting from an initial value of 0.2.) The logistic map is a discrete dynamical system defined by the quadratic difference equation:
In taking the partial derivative of f(x, y) with respect to x, one can take a plane section of the function f at a fixed value of y to plot the level curve of z solely against x; then the partial derivative with respect to x is the slope of the resulting two-dimensional graph.