Search results
Results from the WOW.Com Content Network
Now the product of the factors a − mb mod n can be obtained as a square in two ways—one for each homomorphism. Thus, one can find two numbers x and y, with x 2 − y 2 divisible by n and again with probability at least one half we get a factor of n by finding the greatest common divisor of n and x − y.
In the second step, any natural number c that divides both a and b (in other words, any common divisor of a and b) divides the remainders r k. By definition, a and b can be written as multiples of c: a = mc and b = nc, where m and n are natural numbers. Therefore, c divides the initial remainder r 0, since r 0 = a − q 0 b = mc − q 0 nc = (m ...
C mathematical operations are a group of functions in the standard library of the C programming language implementing basic mathematical functions. [1] [2] All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions.
The factor regression model can be viewed as a combination of factor analysis model (= + +) and regression model (= + +).. Alternatively, the model can be viewed as a special kind of factor model, the hybrid factor model [2]
The quadratic sieve attempts to find pairs of integers x and y(x) (where y(x) is a function of x) satisfying a much weaker condition than x 2 ≡ y 2 (mod n). It selects a set of primes called the factor base, and attempts to find x such that the least absolute remainder of y(x) = x 2 mod n factorizes completely over
All possible combinations of integer factors can be tested for validity, and each valid one can be factored out using polynomial long division. If the original polynomial is the product of factors at least two of which are of degree 2 or higher, this technique only provides a partial factorization; otherwise the factorization is complete.
In general, not every GCD in the above product will be a non-trivial factor of (), but some are, providing the factors we seek. Berlekamp's algorithm finds polynomials g ( x ) {\displaystyle g(x)} suitable for use with the above result by computing a basis for the Berlekamp subalgebra.
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.