Search results
Results from the WOW.Com Content Network
Plasma beta. The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = nkBT) to the magnetic pressure (pmag = B2 /2 μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs. In the fusion power field, plasma is often confined using strong magnets.
Magnetosphere. A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1][2] It is created by a celestial body with an active interior dynamo.
The Earth and most of the planets in the Solar System, as well as the Sun and other stars, all generate magnetic fields through the motion of electrically conducting fluids. [54] The Earth's field originates in its core. This is a region of iron alloys extending to about 3400 km (the radius of the Earth is 6370 km).
A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the currents are driven by the solar wind and interplanetary magnetic field (IMF) and by bulk motions ...
This occurs in the limit of large magnetic Reynolds numbers during which magnetic induction dominates over magnetic diffusion at the velocity and length scales under consideration. [5] Consequently, processes in ideal MHD that convert magnetic energy into kinetic energy, referred to as ideal processes , cannot generate heat and raise entropy .
Measure of electrostatic effect and how far it persists. In plasmas and electrolytes, the Debye length (Debye radius or Debye–Hückel screening length), is a measure of a charge carrier 's net electrostatic effect in a solution and how far its electrostatic effect persists. [1] With each Debye length the charges are increasingly electrically ...
Magnetosphere particle motion. A sketch of Earth's magnetic field representing the source of Earth's magnetic field as a magnet The North Pole of Earth is near the top of the diagram, the South Pole near the bottom. Notice that the South Pole of that magnet is deep in Earth's interior below Earth's North Magnetic Pole.
[5] The dynamic pressure of the wind dominates over the magnetic pressure through most of the Solar System (or heliosphere), so that the magnetic field is pulled into an Archimedean spiral pattern (the Parker spiral [6]) by the combination of the outward motion and the Sun's rotation. In near-Earth space, the IMF nominally makes an angle of ...