Search results
Results from the WOW.Com Content Network
More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficients has a solution which is a complex number. For example, the equation (+) = has no real solution, because the square of a real number cannot be negative, but has the two nonreal complex solutions + and .
R – real numbers. ran – range of a function. rank – rank of a matrix. (Also written as rk.) Re – real part of a complex number. [2] (Also written.) resp – respectively. RHS – right-hand side of an equation. rk – rank. (Also written as rank.) RMS, rms – root mean square. rng – non-unital ring. rot – rotor of a vector field.
A complex number is equal to its complex conjugate if its imaginary part is zero, that is, if the number is real. In other words, real numbers are the only fixed points of conjugation. Conjugation does not change the modulus of a complex number: | ¯ | = | |. Conjugation is an involution, that is, the conjugate of the conjugate of a complex ...
However, there are generalizations of this formula valid for other exponents. These can be used to give explicit expressions for the n th roots of unity, that is, complex numbers z such that z n = 1. Using the standard extensions of the sine and cosine functions to complex numbers, the formula is valid even when x is an arbitrary complex number.
The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers. The ring of integers of a number field K, denoted by O K, is the intersection of K and A: it can also be characterised as the maximal order of the field K. Each algebraic integer belongs to ...
Examples include: Simplification of algebraic expressions, in computer algebra; Simplification of boolean expressions i.e. logic optimization; Simplification by conjunction elimination in inference in logic yields a simpler, but generally non-equivalent formula; Simplification of fractions
In algebra, a split-complex number (or hyperbolic number, also perplex number, double number) is based on a hyperbolic unit j satisfying =, where . A split-complex number has two real number components x and y , and is written z = x + y j . {\displaystyle z=x+yj.}
The imaginary unit or unit imaginary number (i) is a mathematical constant that is a solution to the quadratic equation x 2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex ...