enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    For example, the synodic period of the Moon's orbit as seen from Earth, relative to the Sun, is 29.5 mean solar days, since the Moon's phase and position relative to the Sun and Earth repeats after this period. This is longer than the sidereal period of its orbit around Earth, which is 27.3 mean solar days, owing to the motion of Earth around ...

  3. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).

  4. Orbit of Venus - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Venus

    The distance between Venus and Earth varies from about 42 million km (at inferior conjunction) to about 258 million km (at superior conjunction). The average period between successive conjunctions of one type is 584 days – one synodic period of Venus. Five synodic periods of Venus is almost exactly 13 sidereal Venus years and 8 Earth years ...

  5. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    Mercury's sidereal day is about two-thirds of its orbital period, so by the prograde formula its solar day lasts for two revolutions around the Sun – three times as long as its sidereal day. Venus rotates retrograde with a sidereal day lasting about 243.0 Earth days, or about 1.08 times its orbital period of 224.7 Earth days; hence by the ...

  6. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The orbit of a planet is an ellipse with the Sun at one of the two foci. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.

  7. Sidereal year - Wikipedia

    en.wikipedia.org/wiki/Sidereal_year

    The sidereal year differs from the solar year, "the period of time required for the ecliptic longitude of the Sun to increase 360 degrees", [2] due to the precession of the equinoxes. The sidereal year is 20 min 24.5 s longer than the mean tropical year at J2000.0 (365.242 190 402 ephemeris days). [1]

  8. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Mars comes closer to Earth more than any other planet save Venus at its nearest—56 million km is the closest distance between Mars and Earth, whereas the closest Venus comes to Earth is 40 million km. Mars comes closest to Earth every other year, around the time of its opposition, when Earth is sweeping between the Sun and Mars. Extra-close ...

  9. Areostationary orbit - Wikipedia

    en.wikipedia.org/wiki/Areostationary_orbit

    Substituting the mass of Mars for M and the Martian sidereal day for T and solving for the semimajor axis yields a synchronous orbit radius of 20,428 km (12,693 mi) above the surface of the Mars equator. [3] [4] [5] Subtracting Mars's radius gives an orbital altitude of 17,032 km (10,583 mi). Two stable longitudes exist - 17.92°W and 167.83°E.