Search results
Results from the WOW.Com Content Network
If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.
The more general class of p-series, =, exemplifies the possible results of the test: If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence.
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]
In mathematical analysis, the alternating series test proves that an alternating series is convergent when its terms decrease monotonically in absolute value and approach zero in the limit. The test was devised by Gottfried Leibniz and is sometimes known as Leibniz's test , Leibniz's rule , or the Leibniz criterion .
Here the series definitely converges for a > 1, and diverges for a < 1. When a = 1, the condensation transformation gives the series (). The logarithms "shift to the left". So when a = 1, we have convergence for b > 1, divergence for b < 1. When b = 1 the value of c enters.