Search results
Results from the WOW.Com Content Network
The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.
The fundamental Schumann resonance is at approximately 7.83 Hz, the frequency at which the wavelength equals the circumference of the Earth, and higher harmonics occur at 14.1, 20.3, 26.4, and 32.4 Hz, etc. Lightning strikes excite these resonances, causing the Earth–ionosphere cavity to "ring" like a bell, resulting in a peak in the noise ...
Earth–ionosphere waveguide. The Earth–ionosphere waveguide[1] is the phenomenon in which certain radio waves can propagate in the space between the ground and the boundary of the ionosphere. Because the ionosphere contains charged particles, it can behave as a conductor. The earth operates as a ground plane, and the resulting cavity behaves ...
Technical University of Munich. Doctoral advisor. Engelbert Arnold. Doctoral students. Fritz Borgnis. Winfried Otto Schumann (May 20, 1888 – September 22, 1974) was a German physicist and electrical engineer who predicted the Schumann resonances, a series of low-frequency resonances caused by lightning discharges in the atmosphere. [1][2]
Fundamental frequency of the Schumann resonances: 10 1: 10 hertz 10 Hz: Cyclic rate of a typical automobile engine at idle (equivalent to 600 rpm) 12 Hz: Acoustic – the lowest possible frequency that a human can hear [3] 18 Hz: Average house cat's purr 24 Hz: Common frame rate of movies 27.5 Hz
A frequency vs. time plot (spectrogram) showing several whistler signals amidst a background of sferics as received at Palmer Station, Antarctica on August 24, 2005.A radio atmospheric signal or sferic (sometimes also spelled "spheric") is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges.
Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another in vacuum, or into various parts of the atmosphere. [1]: 26‑1 As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. [2]
MUSE (Mission to Uranus for Science and Exploration[3]) is a European proposal for a dedicated mission to the planet Uranus to study its atmosphere, interior, moons, rings, and magnetosphere. [2][4] It is proposed to be launched with an Ariane 6 in 2026, travel for 16.5 years to reach Uranus in 2044, and would operate until 2050. [4]