enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Fundamental theorem of arithmetic. Gauss–Markov theorem (brief pointer to proof) Gödel's incompleteness theorem. Gödel's first incompleteness theorem. Gödel's second incompleteness theorem. Goodstein's theorem. Green's theorem (to do) Green's theorem when D is a simple region. Heine–Borel theorem.

  3. Mathematical fallacy - Wikipedia

    en.wikipedia.org/wiki/Mathematical_fallacy

    Mathematical fallacy. In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy. There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known ...

  4. 2 + 2 = 5 - Wikipedia

    en.wikipedia.org/wiki/2_+_2_=_5

    2 + 2 = 5 or two plus two equals five is a mathematical falsehood which is used as an ... when those who dared to say that 2 + 2 = 4 rather than 2 + 2 = 5 were ...

  5. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Pythagorean identities. Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above.

  6. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Then P(n) is true for all natural numbers n. For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent " 2n − 1 is odd": (i) For n = 1, 2n − 1 = 2 (1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  7. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Dirichlet's proof for n = 5 is divided into the two cases (cases I and II) defined by Sophie Germain. In case I, the exponent 5 does not divide the product xyz. In case II, 5 does divide xyz. Case I for n = 5 can be proven immediately by Sophie Germain's theorem(1823) if the auxiliary prime θ = 11.

  8. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A triangle whose side lengths are a Pythagorean triple is a right triangle and ...

  9. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    Glossary of mathematical symbols. A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various ...