enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy release rate (fracture mechanics) - Wikipedia

    en.wikipedia.org/wiki/Energy_release_rate...

    In fracture mechanics, the energy release rate, , is the rate at which energy is transformed as a material undergoes fracture. Mathematically, the energy release rate is expressed as the decrease in total potential energy per increase in fracture surface area, [ 1 ] [ 2 ] and is thus expressed in terms of energy per unit area.

  3. J-integral - Wikipedia

    en.wikipedia.org/wiki/J-integral

    The J-integral represents a way to calculate the strain energy release rate, or work per unit fracture surface area, in a material. [1] The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov [2] and independently in 1968 by James R. Rice, [3] who showed that an energetic contour path integral (called J) was independent of the path around a crack.

  4. Fracture mechanics - Wikipedia

    en.wikipedia.org/wiki/Fracture_mechanics

    Compute the change in the free energy (surface energy − elastic energy) as a function of the crack length. Failure occurs when the free energy attains a peak value at a critical crack length, beyond which the free energy decreases as the crack length increases, i.e. by causing fracture. Using this procedure, Griffith found that

  5. Cohesive zone model - Wikipedia

    en.wikipedia.org/wiki/Cohesive_zone_model

    This allows the strain energy release rate, , to be defined by the critical crack opening displacement, = or the critical cohesive zone size, , as follows: [6] G c = 2 ∫ 0 ν c σ y y d ν = 8 σ t h 2 r c o π E = 2 γ s {\displaystyle G_{c}=2\int _{0}^{\nu _{c}}\sigma _{yy}d\nu ={\frac {8\sigma _{th}^{2}r_{co}}{\pi E}}=2\gamma _{s}}

  6. Material failure theory - Wikipedia

    en.wikipedia.org/wiki/Material_failure_theory

    The fracture toughness and the critical strain energy release rate for plane stress are related by = where is the Young's modulus. If an initial crack size is known, then a critical stress can be determined using the strain energy release rate criterion.

  7. Delamination - Wikipedia

    en.wikipedia.org/wiki/Delamination

    Using the compliance method, the critical strain energy release rate is given by G I c = 3 P C δ C 2 B a {\displaystyle G_{Ic}={\frac {3P_{C}\delta _{C}}{2Ba}}} (2) where P C {\displaystyle P_{C}} and δ C {\displaystyle \delta _{C}} are the maximum load and displacement respectively by determining when the load deflection curve has become ...

  8. Fracture toughness - Wikipedia

    en.wikipedia.org/wiki/Fracture_toughness

    Strain energy release rate per unit fracture surface area is calculated by J-integral method which is a contour path integral around the crack tip where the path begins and ends on either crack surfaces. J-toughness value signifies the resistance of the material in terms of amount of stress energy required for a crack to grow.

  9. Stress intensity factor - Wikipedia

    en.wikipedia.org/wiki/Stress_intensity_factor

    Relationship to energy release rate and J-integral [ edit ] In plane stress conditions, the strain energy release rate ( G {\displaystyle G} ) for a crack under pure mode I, or pure mode II loading is related to the stress intensity factor by: