Search results
Results from the WOW.Com Content Network
Acetylene (systematic name: ethyne) is the chemical compound with the formula C 2 H 2 and structure H−C≡C−H. It is a hydrocarbon and the simplest alkyne. [8] This colorless gas is widely used as a fuel and a chemical building block. It is unstable in its pure form and thus is usually handled as a solution. [9]
In chemistry, the Z-matrix is a way to represent a system built of atoms.A Z-matrix is also known as an internal coordinate representation.It provides a description of each atom in a molecule in terms of its atomic number, bond length, bond angle, and dihedral angle, the so-called internal coordinates, [1] [2] although it is not always the case that a Z-matrix will give information regarding ...
A 3D model of ethyne (), the simplest alkyneIn organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. [1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula C n H 2n−2.
Ethyl group (highlighted blue) as part of a molecule, as the ethyl radical, and in the compounds ethanol, bromoethane, ethyl acetate, and ethyl methyl ether.. In organic chemistry, an ethyl group (abbr. Et) is an alkyl substituent with the formula −CH 2 CH 3, derived from ethane (C 2 H 6).
This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s 2 3p 3.
In the case of chlorination, one of the chlorine atoms replaces a hydrogen atom. The reactions proceed via free-radical pathways, in which the halogen first dissociates into a two neutral radical atoms (homolytic fission). CH 4 + Cl 2 → CH 3 Cl + HCl CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl. all the way to CCl 4 (carbon tetrachloride) C 2 H 6 + Cl ...
Structure of beryllium fluoride (BeF 2), a compound with a linear geometry at the beryllium atom. The linear molecular geometry describes the geometry around a central atom bonded to two other atoms (or ligands ) placed at a bond angle of 180°.
Complete acetylene (H–C≡C–H) molecular orbital set. The left column shows MO's which are occupied in the ground state, with the lowest-energy orbital at the top. The white and grey line visible in some MO's is the molecular axis passing through the nuclei.