Search results
Results from the WOW.Com Content Network
First, the statistician may remove the suspected outliers from the data set and then use the arithmetic mean to estimate the location parameter. Second, the statistician may use a robust statistic, such as the median statistic. Peirce's criterion is a statistical procedure for eliminating outliers.
Least trimmed squares (LTS), or least trimmed sum of squares, is a robust statistical method that fits a function to a set of data whilst not being unduly affected by the presence of outliers [1]. It is one of a number of methods for robust regression.
IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.
May 2015) (Learn how and when to remove this message) In statistics , Dixon's Q test , or simply the Q test , is used for identification and rejection of outliers . This assumes normal distribution and per Robert Dean and Wilfrid Dixon, and others, this test should be used sparingly and never more than once in a data set.
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...
The usual estimate of σ 2 is the internally studentized residual ^ = = ^. where m is the number of parameters in the model (2 in our example).. But if the i th case is suspected of being improbably large, then it would also not be normally distributed.
In statistics, Cook's distance or Cook's D is a commonly used estimate of the influence of a data point when performing a least-squares regression analysis. [1] In a practical ordinary least squares analysis, Cook's distance can be used in several ways: to indicate influential data points that are particularly worth checking for validity; or to indicate regions of the design space where it ...
In statistics and in particular in regression analysis, leverage is a measure of how far away the independent variable values of an observation are from those of the other observations. High-leverage points, if any, are outliers with respect to the independent variables.