Search results
Results from the WOW.Com Content Network
Let () be a polynomial equation, where P is a univariate polynomial of degree n.If one divides all coefficients of P by its leading coefficient, one obtains a new polynomial equation that has the same solutions and consists to equate to zero a monic polynomial.
The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].
In numerical analysis, the Weierstrass method or Durand–Kerner method, discovered by Karl Weierstrass in 1891 and rediscovered independently by Durand in 1960 and Kerner in 1966, is a root-finding algorithm for solving polynomial equations. [1] In other words, the method can be used to solve numerically the equation f(x) = 0,
Given a quadratic polynomial of the form + the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point) of the parabola. That is, h is the x -coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h ), and k is the minimum value (or maximum value, if a < 0) of the quadratic ...
Laguerre's method may even converge to a complex root of the polynomial, because the radicand of the square root may be of a negative number, in the formula for the correction, , given above – manageable so long as complex numbers can be conveniently accommodated for the calculation. This may be considered an advantage or a liability ...
For any given n ≥ 1, among the polynomials of degree n with leading coefficient 1 (monic polynomials): = is the one of which the maximal absolute value on the interval [−1, 1] is minimal. This maximal absolute value is: 1 2 n − 1 {\displaystyle {\frac {1}{2^{n-1}}}} and | f ( x ) | reaches this maximum exactly n + 1 times at: x = cos ...
The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were found.
Then the coefficients of the characteristic polynomial of are given by the elementary symmetric polynomials in those powers. In particular, the sum of the x i k {\displaystyle x_{i}^{k}} , which is the k {\displaystyle k} -th power sum p k {\displaystyle p_{k}} of the roots of the characteristic polynomial of A {\displaystyle \mathbf {A} } , is ...