Search results
Results from the WOW.Com Content Network
Coupled system consisting of three acids. The blue curve shows a back-titration event. When a protein folds, the titratable amino acids in the protein are transferred from a solution-like environment to an environment determined by the 3-dimensional structure of the protein.
It is based on computed electrostatic and chemical properties of the individual amino acids in a protein structure. Specifically it identifies anomalous shapes in the theoretical titration curves of the ionizable amino acids. Biochemically active amino acids tend to have wide buffer ranges and non-sigmoidal titration patterns.
A typical titration curve of a diprotic acid, oxalic acid, titrated with a strong base, sodium hydroxide.Both equivalence points are visible. Titrations are often recorded on graphs called titration curves, which generally contain the volume of the titrant as the independent variable and the pH of the solution as the dependent variable (because it changes depending on the composition of the ...
Composite of titration curves of twenty proteinogenic amino acids grouped by side chain category. For amino acids with uncharged side-chains the zwitterion predominates at pH values between the two pK a values, but coexists in equilibrium with small amounts of net negative and net positive ions.
Also, amino acid side chain affinity for water was measured using vapor phases. [14] Vapor phases represent the simplest non polar phases, because it has no interaction with the solute. [18] The hydration potential and its correlation to the appearance of amino acids on the surface of proteins was studied by Wolfenden.
This standard curve is then used to determine the concentration of the unknown protein. The following elaborates on how one goes from the standard curve to the concentration of the unknown. First, add a line of best fit, or Linear regression and display the equation on the chart.
In biochemistry, a Ramachandran plot (also known as a Rama plot, a Ramachandran diagram or a [φ,ψ] plot), originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, [1] is a way to visualize energetically allowed regions for backbone dihedral angles ( also called as torsional angles , phi and psi angles ) ψ ...
Continuing with the T4 lysozyme example, a titration curve is obtained through observation of a shift in the C2 proton of histidine 31 (Figure 5). Figure 5 shows the shift in the titration curve between the wild-type and the mutant in which Asp70 is Asn. The salt bridge formed is between the deprotonated Asp70 and protonated His31.