Search results
Results from the WOW.Com Content Network
Then, by the well-ordering principle, there is a least element ; cannot be prime since a prime number itself is considered a length-one product of primes. By the definition of non-prime numbers, n {\displaystyle n} has factors a , b {\displaystyle a,b} , where a , b {\displaystyle a,b} are integers greater than one and less than n ...
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
For each well-ordered set T, < defines an order isomorphism between T and the set of all subsets of T having the form <:= {<} ordered by inclusion. This motivates the standard definition, suggested by John von Neumann at the age of 19, now called definition of von Neumann ordinals : "each ordinal is the well-ordered set of all smaller ordinals".
The ordered Bell numbers were studied in the 19th century by Arthur Cayley and William Allen Whitworth. They are named after Eric Temple Bell, who wrote about the Bell numbers, which count the partitions of a set; the ordered Bell numbers count partitions that have been equipped with a total order.
The standard ordering ≤ of the natural numbers is a well ordering and has the additional property that every non-zero natural number has a unique predecessor. Another well ordering of the natural numbers is given by defining that all even numbers are less than all odd numbers, and the usual ordering applies within the evens and the odds:
A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents). [1] [2] Ernst Zermelo ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.