Search results
Results from the WOW.Com Content Network
The effects of insulin vary depending on the tissue involved, e.g., insulin is most important in the uptake of glucose by muscle and adipose tissue. [ 2 ] This insulin signal transduction pathway is composed of trigger mechanisms (e.g., autophosphorylation mechanisms) that serve as signals throughout the cell.
Several of them (GLUT6, GLUT8) are made of motifs that help retain them intracellularly and therefore prevent glucose transport. Whether mechanisms exist to promote cell-surface translocation of these transporters is not yet known, but it has clearly been established that insulin does not promote GLUT6 and GLUT8 cell-surface translocation.
The connecting peptide, or C-peptide, is a short 31-amino-acid polypeptide that connects insulin's A-chain to its B-chain in the proinsulin molecule. In the context of diabetes or hypoglycemia, a measurement of C-peptide blood serum levels can be used to distinguish between different conditions with similar clinical features.
The most noteworthy effect of GLP-1 is its ability to promote insulin secretion in a glucose-dependent manner. As GLP-1 binds to GLP-1 receptors expressed on pancreatic β cells, the receptors couple to G-protein subunits and activate adenylate cyclase, which increases the production of cAMP from ATP. [3]
Insulin is a peptide hormone containing two chains cross-linked by disulfide bridges. Insulin (/ ˈ ɪ n. sj ʊ. l ɪ n /, [5] [6] from Latin insula, 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (INS) gene. It is the main anabolic hormone of the body. [7]
Incretins are released after eating and augment the secretion of insulin released from pancreatic beta cells of the islets of Langerhans by a blood-glucose–dependent mechanism. [1] Some incretins also inhibit glucagon release from the alpha cells of the islets of Langerhans. In addition, they slow the rate of absorption of nutrients into the ...
Insulin and glucagon are the primary hormones involved in maintaining a steady level of glucose in the blood, and the release of each is controlled by the amount of nutrients currently available. [17] The amount of insulin released in the blood and sensitivity of the cells to the insulin both determine the amount of glucose that cells break ...
The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. [5] Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis; a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.