Search results
Results from the WOW.Com Content Network
For example, the blood/gas partition coefficient of a general anesthetic measures how easily the anesthetic passes from gas to blood. [5] Partition coefficients can also be defined when one of the phases is solid, for instance, when one phase is a molten metal and the second is a solid metal, [6] or when both phases are solids. [7]
The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. [1] It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.
The following learning method can be any of the already mentioned machine learning methods, e.g. support vector machines. [21] An alternative approach uses multiple-instance learning by encoding molecules as sets of data instances, each of which represents a possible molecular conformation. A label or response is assigned to each set ...
An illustrative example is the standard 52-card deck. The standard playing card ranks {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} form a 13-element set. The card suits {♠, ♥, ♦, ♣} form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, which correspond to all 52 possible ...
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F {\displaystyle F} of subsets of a given set S {\displaystyle S} is called a family of subsets of S {\displaystyle S} , or a family of sets over S ...
In general, if the integer n is partitioned into a sum in which "1" appears j 1 times, "2" appears j 2 times, and so on, then the number of partitions of a set of size n that collapse to that partition of the integer n when the members of the set become indistinguishable is the corresponding coefficient in the polynomial.
Sometimes, a set is endowed with more than one feature simultaneously, which allows mathematicians to study the interaction between the different structures more richly. For example, an ordering imposes a rigid form, shape, or topology on the set, and if a set has both a topology feature and a group feature, such that these two features are ...
In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets.. Given a set , a collection of subsets is called partition regular if every set A in the collection has the property that, no matter how A is partitioned into finitely many subsets, at least one of the subsets will also belong to the collection.