Search results
Results from the WOW.Com Content Network
In calculus, a method called implicit differentiation makes use of the chain rule to differentiate implicitly defined functions. To differentiate an implicit function y ( x ) , defined by an equation R ( x , y ) = 0 , it is not generally possible to solve it explicitly for y and then differentiate.
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
Implicit representations facilitate the computation of intersection points: If one curve is represented implicitly and the other parametrically the computation of intersection points needs only a simple (1-dimensional) Newton iteration, which is contrary to the cases implicit-implicit and parametric-parametric (see Intersection).
The implicit function theorem converts relations such as f(x, y) = 0 into functions. It states that if f is continuously differentiable, then around most points, the zero set of f looks like graphs of functions pasted together. The points where this is not true are determined by a condition on the derivative of f.
The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.
Assuming that has an inverse in a neighbourhood of and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at and have a derivative given by the above formula. The inverse function rule may also be expressed in Leibniz's notation. As that notation suggests,
Implicit differentiation gives the formula for the slope of the tangent line to this curve to be [3] =. Using either one of the polar representations above, the area of the interior of the loop is found to be 3 a 2 / 2 {\displaystyle 3a^{2}/2} .
Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...