enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ferredoxin—NADP(+) reductase - Wikipedia

    en.wikipedia.org/wiki/Ferredoxin—NADP(+)_reductase

    Ferredoxin: NADP + reductase is the last enzyme in the transfer of electrons during photosynthesis from photosystem I to NADPH. [2] The NADPH is then used as a reducing equivalent in the reactions of the Calvin cycle. [2] Electron cycling from ferredoxin to NADPH only occurs in the light in part because FNR activity is inhibited in the dark. [11]

  3. Nicotinamide adenine dinucleotide - Wikipedia

    en.wikipedia.org/wiki/Nicotinamide_adenine_di...

    In cellular metabolism, NAD is involved in redox reactions, carrying electrons from one reaction to another, so it is found in two forms: NAD + is an oxidizing agent, accepting electrons from other molecules and becoming reduced; with H +, this reaction forms NADH, which can be used as a reducing agent to donate electrons.

  4. Glycerol-3-phosphate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Glycerol-3-phosphate_de...

    The NAD+/NADH coenzyme couple act as an electron reservoir for metabolic redox reactions, carrying electrons from one reaction to another. [5] Most of these metabolism reactions occur in the mitochondria. To regenerate NAD+ for further use, NADH pools in the cytosol must be reoxidized.

  5. Photodissociation - Wikipedia

    en.wikipedia.org/wiki/Photodissociation

    The electrons reach the P700 reaction center of photosystem I where they are energized again by light. They are passed down another electron transport chain and finally combine with the coenzyme NADP + and protons outside the thylakoids to form NADPH. Thus, the net oxidation reaction of water photolysis can be written as:

  6. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    Photosystem I (PSI, or plastocyanin–ferredoxin oxidoreductase) is one of two photosystems in the photosynthetic light reactions of algae, plants, and cyanobacteria. Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin.

  7. Hydrogen dehydrogenase (NADP+) - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_dehydrogenase_(NADP+)

    In enzymology, a hydrogen dehydrogenase (NADP+) (EC 1.12.1.3) is an enzyme that catalyzes the chemical reaction. H 2 + NADP + H + + NADPH. Thus, the two substrates of this enzyme are H 2 and NADP +, whereas its two products are H + and NADPH.

  8. Respiratory complex I - Wikipedia

    en.wikipedia.org/wiki/Respiratory_complex_I

    The electrons are then transferred through the FMN via a series of iron-sulfur (Fe-S) clusters, [10] and finally to coenzyme Q10 (ubiquinone). This electron flow changes the redox state of the protein, inducing conformational changes of the protein which alters the p K values of ionizable side chain, and causes four hydrogen ions to be pumped ...

  9. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [1] as well as in some electrowinning processes. [2] Since hydrogen can be used as an alternative clean burning fuel, there has been a need to split water efficiently.