Search results
Results from the WOW.Com Content Network
Peirce's criterion does not depend on observation data (only characteristics of the observation data), therefore making it a highly repeatable process that can be calculated independently of other processes. This feature makes Peirce's criterion for identifying outliers ideal in computer applications because it can be written as a call function.
A truncated mean or trimmed mean is a statistical measure of central tendency, much like the mean and median.It involves the calculation of the mean after discarding given parts of a probability distribution or sample at the high and low end, and typically discarding an equal amount of both.
The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.
However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.
Note that winsorizing is not equivalent to simply excluding data, which is a simpler procedure, called trimming or truncation, but is a method of censoring data. In a trimmed estimator, the extreme values are discarded; in a winsorized estimator, the extreme values are instead replaced by certain percentiles (the trimmed minimum and maximum).
Sometimes, a set of numbers might contain outliers (i.e., data values which are much lower or much higher than the others). Often, outliers are erroneous data caused by artifacts. In this case, one can use a truncated mean. It involves discarding given parts of the data at the top or the bottom end, typically an equal amount at each end and ...
The formula then divides by () to account for the fact that we remove the observation rather than adjusting its value, reflecting the fact that removal changes the distribution of covariates more when applied to high-leverage observations (i.e. with outlier covariate values). Similar formulas arise when applying general formulas for statistical ...
The earliest reference to a similar formula appears to be Armstrong (1985, p. 348), where it is called "adjusted MAPE" and is defined without the absolute values in the denominator. It was later discussed, modified, and re-proposed by Flores (1986).