enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    In data sets containing real-numbered measurements, the suspected outliers are the measured values that appear to lie outside the cluster of most of the other data values. . The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of locati

  3. Truncated mean - Wikipedia

    en.wikipedia.org/wiki/Truncated_mean

    A truncated mean or trimmed mean is a statistical measure of central tendency, much like the mean and median.It involves the calculation of the mean after discarding given parts of a probability distribution or sample at the high and low end, and typically discarding an equal amount of both.

  4. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.

  5. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    Naive interpretation of statistics derived from data sets that include outliers may be misleading. For example, if one is calculating the average temperature of 10 objects in a room, and nine of them are between 20 and 25 degrees Celsius , but an oven is at 175 °C, the median of the data will be between 20 and 25 °C but the mean temperature ...

  6. Trimmed estimator - Wikipedia

    en.wikipedia.org/wiki/Trimmed_estimator

    Given an estimator, the x% trimmed version is obtained by discarding the x% lowest or highest observations or on both end: it is a statistic on the middle of the data. For instance, the 5% trimmed mean is obtained by taking the mean of the 5% to 95% range. In some cases a trimmed estimator discards a fixed number of points (such as maximum and ...

  7. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  8. Mean - Wikipedia

    en.wikipedia.org/wiki/Mean

    Sometimes, a set of numbers might contain outliers (i.e., data values which are much lower or much higher than the others). Often, outliers are erroneous data caused by artifacts. In this case, one can use a truncated mean. It involves discarding given parts of the data at the top or the bottom end, typically an equal amount at each end and ...

  9. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.