Search results
Results from the WOW.Com Content Network
In ultrafiltration, the molecular weight cut-off or MWCO of a membrane refers to the lowest molecular weight of the solute (in daltons) for which 90% of the solute is retained by (prevented from passing through) the membrane, [1] or the molecular weight of the molecule (e.g. globular protein) that is 90% retained by the membrane.
Different dialysis tubing or flat membranes are produced and characterized as differing molecular-weight cutoffs (MWCO) ranging from 1–1,000,000 kDa. The MWCO determination is the result of the number and average size of the pores created during the production of the dialysis membrane.
The MWCO of a membrane is the result of the number and average size of the pores created during production of the dialysis membrane. The MWCO typically refers to the smallest average molecular mass of a standard molecule that will not effectively diffuse across the membrane during extended dialysis.
The pore sizes of technical membranes are specified differently depending on the manufacturer. One common distinction is by nominal pore size. It describes the maximum pore size distribution [9] and gives only vague information about the retention capacity of a membrane. The exclusion limit or "cut-off" of the membrane is usually specified in ...
Hemodialysis, also spelled haemodialysis, or simply dialysis, is a process of filtering the blood of a person whose kidneys are not working normally. This type of dialysis achieves the extracorporeal removal of waste products such as creatinine and urea and free water from the blood when the kidneys are in a state of kidney failure.
Molecules that are significantly smaller than the MWCO penetrate into the pores of the resin, while molecules larger than the MWCO are unable to enter the pores and remain together in the void volume of the column. By passing samples through a column resin bed with sufficient length and volume, macromolecules can be fully separated from small ...
Semipermeable membrane is a type of synthetic or biologic, polymeric membrane that allows certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure , concentration , and temperature of the molecules or solutes on either side, as well as the permeability of the membrane to each solute.
It is widely used to measure minimum, maximum (or first bubble point) and mean flow pore sizes, and pore size distribution in membranes [1] nonwovens, paper, filtration and ultrafiltration media, hollow fibers, [2] ceramics, etc. In capillary flow porometry an inert gas is used to displace a liquid, which is in the pores. The pressure required ...