Search results
Results from the WOW.Com Content Network
Failed aluminium electrolytic capacitors with open vents in the top of the can, and visible dried electrolyte residue (reddish-brown color) The capacitor plague was a problem related to a higher-than-expected failure rate of non-solid aluminium electrolytic capacitors between 1999 and 2007, especially those from some Taiwanese manufacturers, [1] [2] due to faulty electrolyte composition that ...
Structurally, capacitors consist of electrodes separated by a dielectric, connecting leads, and housing; deterioration of any of these may cause parameter shifts or failure. Shorted failures and leakage due to increase of parallel parasitic resistance are the most common failure modes of capacitors, followed by open failures.
Another contributor to leakage from a capacitor is from the undesired imperfection of some dielectric materials used in capacitors, also known as dielectric leakage. It is a result of the dielectric material not being a perfect insulator and having some non-zero conductivity, allowing a leakage current to flow, slowly discharging the capacitor. [1]
Applying a reverse polarity voltage, or a voltage exceeding the maximum rated working voltage of as little as 1 or 1.5 volts, can damage the dielectric causing catastrophic failure of the capacitor itself. Failure of electrolytic capacitors can result in an explosion or fire, potentially causing damage to other components as well as injuries.
If the failure is a short circuit (the most common occurrence), and current is not limited to a safe value, catastrophic thermal runaway may occur. This failure can even result in the capacitor forcefully ejecting its burning core. Tantalum electrolytic capacitors with solid electrolyte are marked at their positive terminal with a bar or a "+".
Larger capacitors may have vents or similar mechanism to allow the release of such pressures in the event of failure. Capacitors used in RF or sustained high-current applications can overheat, especially in the center of the capacitor rolls. Capacitors used within high-energy capacitor banks can violently explode when a short in one capacitor ...
In electronics, a bleeder resistor, bleeder load, leakage resistor, capacitor discharge resistor or safety discharge resistor is a resistor connected in parallel with the output of a high-voltage power supply circuit for the purpose of discharging the electric charge stored in the power supply's filter capacitors when the equipment is turned off, for safety reasons.
Peak inrush current into a high voltage capacitor upon power up can stress the component, reducing its reliability. Pre-charge of the powerline voltages in a high voltage DC application is a preliminary mode which limits the inrush current during the power up procedure.